Plant Extracellular Vesicles and Nanovesicles: Focus on Secondary Metabolites, Proteins and Lipids with Perspectives on Their Potential and Sources.
Eric WoithGea GuerrieroJean-Francois HausmanJenny RenautCéline C LeclercqChristoph WeiseSylvain LegayAlexander WengMatthias F MelzigPublished in: International journal of molecular sciences (2021)
While human extracellular vesicles (EVs) have attracted a big deal of interest and have been extensively characterized over the last years, plant-derived EVs and nanovesicles have earned less attention and have remained poorly investigated. Although a series of investigations already revealed promising beneficial health effects and drug delivery properties, adequate (pre)clinical studies are rare. This fact might be caused by a lack of sources with appropriate qualities. Our study introduces plant cell suspension culture as a new and well controllable source for plant EVs. Plant cells, cultured in vitro, release EVs into the growth medium which could be harvested for pharmaceutical applications. In this investigation we characterized EVs and nanovesicles from distinct sources. Our findings regarding secondary metabolites indicate that these might not be packaged into EVs in an active manner but enriched in the membrane when lipophilic enough, since apparently lipophilic compounds were associated with nanovesicles while more hydrophilic structures were not consistently found. In addition, protein identification revealed a possible explanation for the mechanism of EV cell wall passage in plants, since cell wall hydrolases like 1,3-β-glucosidases, pectinesterases, polygalacturonases, β-galactosidases and β-xylosidase/α-L-arabinofuranosidase 2-like are present in plant EVs and nanovesicles which might facilitate cell wall transition. Further on, the identified proteins indicate that plant cells secrete EVs using similar mechanisms as animal cells to release exosomes and microvesicles.
Keyphrases
- cell wall
- induced apoptosis
- cell cycle arrest
- drug delivery
- endothelial cells
- single cell
- ms ms
- stem cells
- signaling pathway
- drinking water
- mesenchymal stem cells
- machine learning
- cell death
- multidrug resistant
- cell proliferation
- oxidative stress
- high resolution
- liquid chromatography
- artificial intelligence
- human health
- atomic force microscopy