Login / Signup

Fabrication and Process Optimization of Chinese Fir-Derived SiC Ceramic with High-Performance Friction Properties.

Fuling LiuShanshan ChangYuanjuan BaiXianjun LiXiaojian ZhouJin-Bo Hu
Published in: Materials (Basel, Switzerland) (2023)
In this study, a novel friction material with biomass-ceramic (SiC) dual matrixes was fabricated using Chinese fir pyrocarbon via the liquid-phase silicon infiltration and in situ growth method. SiC can be grown in situ on the surface of a carbonized wood cell wall by mixing and calcination of wood and Si powder. The samples were characterized using XRD, SEM, and SEM-EDS analysis. Meanwhile, their friction coefficients and wear rates were tested to study their frictional properties. To explore the influence of crucial factors on friction performance, response surface analysis was also conducted to optimize the preparation process. The results showed that longitudinally crossed and disordered SiC nanowhiskers were grown on the carbonized wood cell wall, which could enhance the strength of SiC. The designed biomass-ceramic material had satisfying friction coefficients and low wear rates. The response surface analysis results indicate that the optimal process could be determined (carbon to silicon ratio of 3:7, reaction temperature of 1600 °C, and 5% adhesive dosage). Biomass-ceramic materials utilizing Chinese fir pyrocarbon could display great promise to potentially replace the current iron-copper-based alloy materials used in brake systems.
Keyphrases
  • cell wall
  • wastewater treatment
  • big data
  • deep learning
  • simultaneous determination