Login / Signup

Molecular Orientation and Organization of Technical Lignin-Based Composite Nanofibers and Films.

Mijung ChoFrank K KoScott Renneckar
Published in: Biomacromolecules (2019)
Natural materials are highly anisotropic, maximizing performance of the polymeric structures while conserving mass and enhancing function. In synthetic materials, nanoscale fibers produced by electrospinning often contain molecular alignment of polymers along the fiber axis achieving some similarity to natural fibers. In this study, isolated softwood kraft lignin (SKL) was electrospun into aligned fibers utilizing a special collector. The molecular organization of lignin within the aligned nanofibers was investigated by polarized light optical microscopy. Furthermore, the functional groups that had preferred alignment along the fiber axis were identified with polarized Fourier transform infrared (FTIR) spectroscopy based on dichroism measurements. In addition, nanocrystalline cellulose (NCC) was added to the lignin solutions in order to create composite nanofibers. Both the orientation of NCC within the nanoscale fibers and the impact this component had on the degree of orientation of SKL within the aligned nanofibers were revealed by utilizing polarized FTIR. Finally, solvent cast lignin films were analyzed for their anisotropic polarizability, demonstrating birefringence with and without nanocrystalline cellulose. The work provided unique insight into both preferred orientation (fibers) and assembly (films) for technical lignin due to processing.
Keyphrases
  • ionic liquid
  • room temperature
  • single molecule
  • high resolution
  • atomic force microscopy
  • high speed
  • squamous cell carcinoma
  • neoadjuvant chemotherapy
  • drug release