Login / Signup

Predicting Structural Motifs of Glycosaminoglycans using Cryogenic Infrared Spectroscopy and Random Forest.

Jerome RiedelMaike LettowMárkó GrabaricsMichael GötzeRebecca L MillerGeert-Jan BoonsGerard MeijerGert von HeldenGergo Peter SzekeresKevin Pagel
Published in: Journal of the American Chemical Society (2023)
In recent years, glycosaminoglycans (GAGs) have emerged into the focus of biochemical and biomedical research due to their importance in a variety of physiological processes. These molecules show great diversity, which makes their analysis highly challenging. A promising tool for identifying the structural motifs and conformation of shorter GAG chains is cryogenic gas-phase infrared (IR) spectroscopy. In this work, the cryogenic gas-phase IR spectra of mass-selected heparan sulfate (HS) di-, tetra-, and hexasaccharide ions were recorded to extract vibrational features that are characteristic to structural motifs. The data were augmented with chondroitin sulfate (CS) disaccharide spectra to assemble a training library for random forest (RF) classifiers. These were used to discriminate between GAG classes (CS or HS) and different sulfate positions (2- O -, 4- O -, 6- O -, and N -sulfation). With optimized data preprocessing and RF modeling, a prediction accuracy of >97% was achieved for HS tetra- and hexasaccharides based on a training set of only 21 spectra. These results exemplify the importance of combining gas-phase cryogenic IR ion spectroscopy with machine learning to improve the future analytical workflow for GAG sequencing and that of other biomolecules, such as metabolites.
Keyphrases