Login / Signup

Spatially structured inhibition defined by polarized parvalbumin interneuron axons promotes head direction tuning.

Yangfan PengFederico J Barreda TomasPaul PfeifferMoritz DrangmeisterSusanne SchreiberImre VidaJörg Rolf Paul Geiger
Published in: Science advances (2021)
In cortical microcircuits, it is generally assumed that fast-spiking parvalbumin interneurons mediate dense and nonselective inhibition. Some reports indicate sparse and structured inhibitory connectivity, but the computational relevance and the underlying spatial organization remain unresolved. In the rat superficial presubiculum, we find that inhibition by fast-spiking interneurons is organized in the form of a dominant super-reciprocal microcircuit motif where multiple pyramidal cells recurrently inhibit each other via a single interneuron. Multineuron recordings and subsequent 3D reconstructions and analysis further show that this nonrandom connectivity arises from an asymmetric, polarized morphology of fast-spiking interneuron axons, which individually cover different directions in the same volume. Network simulations assuming topographically organized input demonstrate that such polarized inhibition can improve head direction tuning of pyramidal cells in comparison to a "blanket of inhibition." We propose that structured inhibition based on asymmetrical axons is an overarching spatial connectivity principle for tailored computation across brain regions.
Keyphrases
  • resting state
  • white matter
  • functional connectivity
  • cell cycle arrest
  • magnetic resonance imaging
  • cell death
  • blood brain barrier
  • adverse drug
  • clinical evaluation