Login / Signup

Label-free inertial-ferrohydrodynamic cell separation with high throughput and resolution.

Yang LiuWujun ZhaoRui ChengAlicia PuigJamie HodgsonMary EganChristen N Cooper PopePetros G NikolinakosLeidong Mao
Published in: Lab on a chip (2021)
Rapid and label-free separation of target cells from biological samples provided unique opportunity for disease diagnostics and treatment. However, even with advanced technologies for cell separation, the limited throughput, high cost and low separation resolution still prevented their utility in separating cells with well-defined physical features from a large volume of biological samples. Here we described an ultrahigh-throughput microfluidic technology, termed as inertial-ferrohydrodynamic cell separation (inertial-FCS), that rapidly sorted through over 60 milliliters of samples at a throughput of 100 000 cells per second in a label-free manner, differentiating the cells based on their physical diameter difference with ∼1-2 μm separation resolution. Through the integration of inertial focusing and ferrohydrodynamic separation, we demonstrated that the resulting inertial-FCS devices could separate viable and expandable circulating tumor cells from cancer patients' blood with a high recovery rate and high purity. We also showed that the devices could enrich lymphocytes directly from white blood cells based on their physical morphology without any labeling steps. This label-free method could address the needs of high throughput and high resolution cell separation in circulating tumor cell research and adoptive cell transfer immunotherapy.
Keyphrases