Spatial targeted delivery of riboflavin with a controlled corneal iontophoresis delivery system in theranostic-guided UV-A light photo-therapy.
Marco LombardoSebastiano SerraoGiuseppe Massimo BernavaGiuseppe LombardoPublished in: Journal of biophotonics (2024)
Seven human donor eye globes underwent corneal cross-linking using theranostic UV-A device with accessory corneal iontophoresis system for patterned delivery of a 0.22% riboflavin solution. Theranostic-guided UV-A light illumination assessed riboflavin distribution and treated corneas at 10 mW/cm 2 for 9 min with a 5.0-mm beam size. Corneal topography maps were taken at baseline and 2-h post-treatment. Analysis utilized corneal topography elevation data, with results showing controlled riboflavin delivery led to a consistent gradient, with 40% higher levels centrally (248 ± 79 μg/cm 3 ) than peripherally (180 ± 72 μg/cm 3 at ±2.5 mm from the center). Theranostic-guided UV-A light irradiation resulted in significant changes in corneal topography, with a decrease in best-fit sphere value (-0.7 ± 0.2 D; p < 0.001) and consistent downward shift in corneal elevation map (-11.7 ± 3.7 μm). The coefficient of variation was 2.5%, indicating high procedure performance in achieving significant and reliable corneal flattening.
Keyphrases