Evolutionary Divergence in DNA Damage Responses among Fungi.
Jacob Lucas SteenwykPublished in: mBio (2021)
Cell cycle checkpoints and DNA repair pathways contribute to maintaining genome integrity and are thought to be evolutionarily ancient and broadly conserved. For example, in the yeast Saccharomyces cerevisiae and humans, DNA damage induces activation of a checkpoint effector kinase, Rad53p (human homolog Chk2), to promote cell cycle arrest and transcription of DNA repair genes. However, recent studies have revealed variation in the DNA damage response networks of some fungi. For example, Shor et al. (mBio 11:e03044-20, 2020, https://doi.org/10.1128/mBio.03044-20) demonstrate that in comparison to S. cerevisiae, the fungal pathogen Candida glabrata has reduced activation of Rad53p in response to DNA damage. Consequently, some downstream targets that contribute to S. cerevisiae genome maintenance, such as DNA polymerases, are transcriptionally downregulated in C. glabrata Downregulation of genome maintenance genes likely contributes to higher rates of mitotic failure and cell death in C. glabrata This and other recent findings highlight evolutionary diversity in eukaryotic DNA damage responses.
Keyphrases
- dna repair
- dna damage
- dna damage response
- genome wide
- cell cycle
- candida albicans
- cell death
- saccharomyces cerevisiae
- cell cycle arrest
- cell proliferation
- oxidative stress
- dna methylation
- pi k akt
- biofilm formation
- endothelial cells
- signaling pathway
- transcription factor
- single cell
- escherichia coli
- cell free
- gene expression
- circulating tumor
- staphylococcus aureus
- bioinformatics analysis
- genome wide analysis