Are Heptazine-Based Organic Light-Emitting Diode Chromophores Thermally Activated Delayed Fluorescence or Inverted Singlet-Triplet Systems?
Andrzej L SobolewskiWolfgang DomckePublished in: The journal of physical chemistry letters (2021)
Two chromophores derived from heptazine, HAP-3MF and HAP-3TPA, were synthesized and tested as emitters in light-emitting diodes (OLEDs) by Adachi and co-workers. Both emitters were shown to exhibit quantum efficiencies which exceed the theoretical maximum of conventional fluorescent OLEDs. The enhanced emission efficiency was explained by the mechanism of thermally activated delayed fluorescence (TADF). In the present work, the electronic excitation energies and essential features of the topography of the excited-state potential-energy surfaces of HAP-3MF and HAP-3TPA have been investigated with a wave function-based ab initio method (ADC(2)). It is found that HAP-3MF is an inverted singlet-triplet (IST) system; that is, the energies of the S1 and T1 states are robustly inverted in violation of Hund's multiplicity rule. Notably, HAP-3MF presumably is the first IST emitter which was implemented in an OLED device. In HAP-3TPA, on the other hand, the vertical excitation energies of the S1 and T1 states are essentially degenerate. The excited states exhibit vibrational stabilization energies of similar magnitude along different relaxation coordinates, resulting in adiabatic excitation energies which also are nearly degenerate. HAP-3TPA is found to be a chromophore at the borderline of TADF and IST systems. The spectroscopic data reported by Adachi and co-workers for HAP-3MF and HAP-3TPA are analyzed in light of these computational results.