Login / Signup

Kinematic Analysis of the Postural Demands in Professional Soccer Match Play Using Inertial Measurement Units.

Jose María Oliva-LozanoElisa F MaraverVíctor FortesJosé M Muyor
Published in: Sensors (Basel, Switzerland) (2020)
The development of wearable sensors has allowed the analysis of trunk kinematics in match play, which is necessary for a better understanding of the postural demands of the players. The aims of this study were to analyze the postural demands of professional soccer players by playing position. A longitudinal study for 13 consecutive microcycles, which included one match per microcycle, was conducted. Wearable sensors with inertial measurement units were used to collect the percentage (%) of playing time spent and G-forces experienced in different trunk inclinations and the inclination required for different speeds thresholds. The inclination zone had a significant effect on the time percentage spent on each zone (p < 0.001, partial eta-squared (ηp2 = 0.85) and the G-forces experienced by the players (p < 0.001, ηp2 = 0.24). Additionally, a significant effect of the speed variable on the trunk inclination zones was found, since trunk flexion increased with greater speeds (p < 0.001; ηp2 = 0.73), except for midfielders. The players spent most of the time in trunk flexion between 20° and 40°; the greatest G-forces were observed in trunk extension zones between 0° and 30°, and a linear relationship between trunk inclination and speed was found. This study presents a new approach for the analysis of players' performance. Given the large volumes of trunk flexion and the interaction of playing position, coaches are recommended to incorporate position-specific training drills aimed to properly prepare the players for the perception-action demands (i.e., visual exploration and decision-making) of the match, as well as trunk strength exercises and other compensatory strategies before and after the match.
Keyphrases
  • lower limb
  • decision making
  • low cost