Login / Signup

Development and reproduction of Scirtothrips dorsalis (Thysanoptera: Thripidae) on six host plant species.

Yu CaoYuping YangChun WangMin LiLing ChenHua XieLijuan WangStuart R ReitzCan Li
Published in: Journal of economic entomology (2024)
Host plants can strongly influence the population performance of insects. Here, we investigated the development, survival, and oviposition of Scirtothrips dorsalis Hood on 6 host plants-Camellia sinensis ( L.) Kuntze (Ericales: Theaceae), Rosa chinensis Jacq. (Rosales: Rosaceae), Capsicum annuum L. (Solanales: Solanaceae), Eustoma grandiflorum (Hook.) G.Don (Gentianales: Gentianaceae), Glycine max (L.) Merr. (Fabales: Fabaceae), and Cucumis sativus L. (Cucurbitales: Cucurbitaceae), and constructed life tables for S. dorsalis on each plant. Significant differences in S. dorsalis development on the host species were observed. The mean developmental period from egg to adult was 11.45 ± 0.12 days, 11.24 ± 0.13 days, 12.08 ± 0.15 days, 12.28 ± 0.12 days, 12.67 ± 0.10 days, and 13.03 ± 0.11 days on C. sinensis, R. chinensis, C. annuum, E. grandiflorum, G. max, and C. sativus, respectively. Significant differences in survival of S. dorsalis were observed, namely, C. sinensis ≈ R. chinensis > E. grandiflorum ≈ C. annuum > G. max > C. sativus. The highest and lowest fecundities of S. dorsalis were recorded on R. chinensis (60.44 ± 1.53) and C. sativus (28.64 ± 1.02), respectively. Both of the net reproductive rate (R0) and intrinsic rate of increase (rm) of S. dorsalis were the highest on R. chinensis, with the values of 27.63 ± 0.58 and 0.142 ± 0.002, respectively; while the lowest on C. sativus, with the values of 8.81 ± 0.12 and 0.092 ± 0.003, respectively. Thus, R. chinensis was found to be the most suitable host, but C. sativus was the least suitable, for population development of S. dorsalis. Our results provide important information for the key control of S. dorsalis among different host plants.
Keyphrases
  • young adults
  • free survival
  • aedes aegypti
  • atomic force microscopy