Login / Signup

Water Electric Field Induced Modulation of the Wetting of Hexagonal Boron Nitride: Insights from Multiscale Modeling of Many-Body Polarization.

Shuang LuoRahul Prasanna MisraDaniel Blankschtein
Published in: ACS nano (2024)
Understanding the behavior of water contacting two-dimensional materials, such as hexagonal boron nitride (hBN), is important in practical applications, including seawater desalination and energy harvesting. Water, being a polar solvent, can strongly polarize the hBN surface via the electric fields that it generates. However, there is a lack of molecular-level understanding about the role of polarization effects at the hBN/water interface, including its effect on the wetting properties of water. In this study, we develop a theoretical framework that introduces an all-atomistic polarizable force field to accurately model the interactions of water molecules with hBN surfaces. The force field is then utilized to self-consistently describe the water-induced polarization of hBN using the classical Drude oscillator model, including predicting the hBN-water binding energies which are found to be in excellent agreement with diffusion Monte Carlo (DMC) predictions. By carrying out molecular dynamics (MD) simulations, we demonstrate that the polarizable force field yields a water contact angle on multilayered hBN which is in close agreement with the recent experimentally reported values. Conversely, an implicit modeling of the hBN-water polarization energy utilizing a Lennard-Jones (LJ) potential, a commonly utilized approximation in previous MD simulation studies, leads to a considerably lower water contact angle. This difference in the predicted contact angles is attributed to the significant energy-entropy compensation resulting from the incorporation of polarization effects at the hBN-water interface. Our work highlights the importance of self-consistently modeling the hBN-water polarization energy and offers insights into the wetting-related interfacial phenomena of water on polarizable materials.
Keyphrases
  • molecular dynamics
  • escherichia coli
  • staphylococcus aureus
  • mass spectrometry
  • molecular dynamics simulations
  • drug induced
  • endothelial cells
  • density functional theory
  • monte carlo
  • virtual reality