Platinized Titanium as Alternative Cost-Effective Anode for Efficient Kolbe Electrolysis in Aqueous Electrolyte Solutions.
Katharina NeubertMatthias SchmidtFalk HarnischPublished in: ChemSusChem (2021)
Five commercial materials were assessed for electrochemical conversion of n-hexanoic acid by Kolbe electrolysis. Platinized titanium performed best, achieving a coulombic efficiency (CE) of 93.1±6.7 % (n=6) for the degradation of n-hexanoic acid and 48.3±3.2 % (n=6) for the production of n-decane, which is close to the performance of pure platinum (89.7±14.4 and 55.5±3.5 %; n=6). 56.7 mL liquid fuel was produced per mole n-hexanoic acid, converting to an energy demand of 6.66 kWh and 1.22 € per L. Using optical profilometry and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy, it was shown that the degree of coverage of the titanium surface with platinum played the most important role. An uncovered surface of as little as 1-3 % already led to a deterioration of the CE of approximately 50 %. Using platinized titanium requires >36 times less capital expenditure at only <10 % increased operational expenditure; an electrode lifetime of 10000 h can be expected.