Login / Signup

Broadly Tunable Plasmons in Doped Oxide Nanoparticles for Ultrafast and Broadband Mid-Infrared All-Optical Switching.

Qiangbing GuoZhipeng QinZhuan WangYu-Xiang WengXiaofeng LiuGuoqiang XieJianrong Qiu
Published in: ACS nano (2018)
Plasmons in conducting nanostructures offer the means to efficiently manipulate light at the nanoscale with subpicosecond speed in an all-optical operation fashion, thus allowing for construction of high performance all-optical signal-processing devices. Here, by exploiting the ultrafast nonlinear optical properties of broadly tunable mid-infrared (MIR) plasmons in solution-processed, degenerately doped oxide nanoparticles, we demonstrate ultrafast all-optical switching in the MIR region, which features subpicosecond response speed (with recovery time constant of <400 fs) as well as an ultrabroadband response spectral range (covering 3.0-5.0 μm). Furthermore, with the degenerately doped nanoparticles as Q-switch, pulsed fiber lasers covering 2.0-3.5 μm were constructed, of which a watt-level fiber laser at 3.0 μm band shows superior overall performance among previously reported passively Q-switched fiber lasers at the same band. Notably, the degenerately doped nanoparticles show great potential to work in the spectral range over 3.0 μm, which is beyond the accessibility of commercially available but expensive semiconducting saturable absorber mirror (SESAM). Our work demonstrates a versatile while cost-effective material solution to ultrafast photonics in the technologically important MIR region.
Keyphrases