Login / Signup

Cγ(S/R)-Bimodal Peptide Nucleic Acids (Cγ-bm-PNA) Form Coupled Double Duplexes by Synchronous Binding to Two Complementary DNA Strands.

Pramod BhingardeveBharath Raj MadhanagopalKrishna N Ganesh
Published in: The Journal of organic chemistry (2020)
Peptide nucleic acids (PNAs) are linear equivalents of DNA with a neutral acyclic polyamide backbone that has nucleobases attached via tert-amide link on repeating units of aminoethylglycine. They bind complementary DNA or RNA with sequence specificity to form hybrids that are more stable than the corresponding DNA/RNA self-duplexes. A new type of PNA termed bimodal PNA [Cγ(S/R)-bm-PNA] is designed to have a second nucleobase attached via amide spacer to a side chain at Cγ on the repeating aeg units of PNA oligomer. Cγ-bimodal PNA oligomers that have two nucleobases per aeg unit are demonstrated to concurrently bind two different complementary DNAs, to form duplexes from both tert-amide side and Cγ side. In such PNA:DNA ternary complexes, the two duplexes share a common PNA backbone. The ternary DNA 1:Cγ(S/R)-bm-PNA:DNA 2 complexes exhibit better thermal stability than the isolated duplexes, and the Cγ(S)-bm-PNA duplexes are more stable than Cγ(R)-bm-PNA duplexes. Bimodal PNAs are first examples of PNA analogues that can form DNA2:PNA:DNA1 double duplexes via recognition through natural bases. The conjoined duplexes of Cγ-bimodal PNAs can be used to generate novel higher-level assemblies.
Keyphrases
  • nucleic acid
  • circulating tumor
  • cell free
  • single molecule
  • gold nanoparticles
  • molecular docking