Professional mathematicians do not differ from others in the symbolic numerical distance and size effects.
Mateusz HoholKlaus WillmesEdward NęckaBartosz BrożekHans-Christoph NuerkKrzysztof CiporaPublished in: Scientific reports (2020)
The numerical distance effect (it is easier to compare numbers that are further apart) and size effect (for a constant distance, it is easier to compare smaller numbers) characterize symbolic number processing. However, evidence for a relationship between these two basic phenomena and more complex mathematical skills is mixed. Previously this relationship has only been studied in participants with normal or poor mathematical skills, not in mathematicians. Furthermore, the prevalence of these effects at the individual level is not known. Here we compared professional mathematicians, engineers, social scientists, and a reference group using the symbolic magnitude classification task with single-digit Arabic numbers. The groups did not differ with respect to symbolic numerical distance and size effects in either frequentist or Bayesian analyses. Moreover, we looked at their prevalence at the individual level using the bootstrapping method: while a reliable numerical distance effect was present in almost all participants, the prevalence of a reliable numerical size effect was much lower. Again, prevalence did not differ between groups. In summary, the phenomena were neither more pronounced nor more prevalent in mathematicians, suggesting that extremely high mathematical skills neither rely on nor have special consequences for analogue processing of symbolic numerical magnitudes.
Keyphrases