Login / Signup

Light Drives and Temperature Modulates: Variation of Phenolic Compounds Profile in Relation to Photosynthesis in Spring Barley.

Daniel VráblJakub NezvalRadomír PechAdriana VolnáPetra MaškováJan PlevaNikola KuzniciusováMichaela ProvazováMichal ŠtrochVladimír Špunda
Published in: International journal of molecular sciences (2023)
Accumulation and metabolic profile of phenolic compounds (PheCs; serving as UV-screening pigments and antioxidants) as well as carbon fixation rate (A n ) and plant growth are sensitive to irradiance and temperature. Since these factors are naturally co-acting in the environment, it is worthy to study the combined effects of these environmental factors to assess their possible physiological consequences. We investigated how low and high irradiance in combination with different temperatures modify the metabolic profile of PheCs and expression of genes involved in the antioxidative enzyme and PheCs biosynthesis, in relation to photosynthetic activity and availability of non-structural carbohydrates (NSC) in spring barley seedlings. High irradiance positively affected A n , NSC, PheCs content, and antioxidant activity (AOX). High temperature led to decreased A n , NSC, and increased dark respiration, whilst low temperature was accompanied by reduction of UV-A shielding but increase of PheCs content and AOX. Besides that, irradiance and temperature caused changes in the metabolic profile of PheCs, particularly alteration in homoorientin/isovitexin derivatives ratio, possibly related to demands on AOX-based protection. Moreover, we also observed changes in the ratio of sinapoyl-/feruloyl- acylated flavonoids, the function of which is not yet known. The data also strongly suggested that the NSC content may support the PheCs production.
Keyphrases
  • plant growth
  • high temperature
  • minimally invasive
  • mass spectrometry
  • deep learning
  • data analysis
  • artificial intelligence