Login / Signup

Synthesis, Structure, and Magnetic Properties of 1D {[MnIII(CN)6][MnII(dapsc)]}n Coordination Polymers: Origin of Unconventional Single-Chain Magnet Behavior.

Valentina D SasnovskayaVyacheslav A KopotkovArtem D TalantsevRoman B MorgunovEduard B YagubskiiSergey V SimonovLeokadiya V ZorinaVladimir S Mironov
Published in: Inorganic chemistry (2017)
Two one-dimensional cyano-bridged coordination polymers, namely, {[MnII(dapsc)][MnIII(CN)6][K(H2O)2.75(MeOH)0.5]}n·0.5n(H2O) (I) and {[MnII(dapsc)][MnIII(CN)6][K(H2O)2(MeOH)2]}n (II), based on alternating high-spin MnII(dapsc) (dapsc = 2,6-diacetylpyridine bis(semicarbazone)) complexes and low-spin orbitally degenerate hexacyanomanganate(III) complexes were synthesized and characterized structurally and magnetically. Static and dynamic magnetic measurements reveal a single-chain magnet (SCM) behavior of I with an energy barrier of Ueff ≈ 40 K. Magnetic properties of I are analyzed in detail in terms of a microscopic theory. It is shown that compound I refers to a peculiar case of SCM that does not fall into the usual Ising and Heisenberg limits due to unconventional character of the MnIII-CN-MnII spin coupling resulting from a nonmagnetic singlet ground state of orbitally degenerate complexes [MnIII(CN)6]3-. The prospects of [MnIII(CN)6]3- complex as magnetically anisotropic molecular building block for engineering molecular magnets are critically analyzed.
Keyphrases
  • lymph node metastasis
  • room temperature
  • single molecule
  • molecularly imprinted
  • density functional theory
  • squamous cell carcinoma
  • ionic liquid
  • mass spectrometry
  • genome wide