Login / Signup

On the Role of Contact Resistance and Electrode Modification in Organic Electrochemical Transistors.

Alexandra F PatersonHendrik FaberAchilleas SavvaGeorgios NikiforidisMurali GeddaTania C HidalgoXingxing ChenIain McCullochThomas D AnthopoulosSahika Inal
Published in: Advanced materials (Deerfield Beach, Fla.) (2019)
Contact resistance is renowned for its unfavorable impact on transistor performance. Despite its notoriety, the nature of contact resistance in organic electrochemical transistors (OECTs) remains unclear. Here, by investigating the role of contact resistance in n-type OECTs, the first demonstration of source/drain-electrode surface modification for achieving state-of-the-art n-type OECTs is reported. Specifically, thiol-based self-assembled monolayers (SAMs), 4-methylbenzenethiol (MBT) and pentafluorobenzenethiol (PFBT), are used to investigate contact resistance in n-type accumulation-mode OECTs made from the hydrophilic copolymer P-90, where the deliberate functionalization of the gold source/drain electrodes decreases and increases the energetic mismatch at the electrode/semiconductor interface, respectively. Although MBT treatment is found to increase the transconductance three-fold, contact resistance is not found to be the dominant factor governing OECT performance. Additional morphology and surface energy investigations show that increased performance comes from SAM-enhanced source/drain electrode surface energy, which improves wetting, semiconductor/metal interface quality, and semiconductor morphology at the electrode and channel. Overall, contact resistance in n-type OECTs is investigated, whilst identifying source/drain electrode treatment as a useful device engineering strategy for achieving state of the art n-type OECTs.
Keyphrases
  • carbon nanotubes
  • room temperature
  • gold nanoparticles
  • mass spectrometry
  • solid state
  • high resolution
  • quality improvement
  • drug release
  • atomic force microscopy