Positron Emission Tomography-Computed Tomography and Magnetic Resonance Imaging Assessments in a Mouse Model of Implant-Related Bone and Joint Staphylococcus aureus Infection.
J J Aguilera-CorreaB SalinasM González-ArjonaD de PabloPatricia MuñozE BouzaM J Fernández AceñeroJaime Esteban MorenoManuel DescoLorena CussóPublished in: Microbiology spectrum (2023)
Osteomyelitis is an infection of the bone, associated with an inflammatory process. Imaging plays an important role in establishing the diagnosis and the most appropriate patient management. However, data are lacking regarding the use of preclinical molecular imaging techniques to assess osteomyelitis progression in experimental models. This study aimed to compare structural and molecular imaging to assess disease progression in a mouse model of implant-related bone and joint infections caused by Staphylococcus aureus. In SWISS mice, the right femur was implanted with a resorbable filament impregnated with S. aureus (infected group, n = 10) or sterile culture medium (uninfected group, n = 6). Eight animals (5 infected, 3 uninfected) were analyzed with magnetic resonance imaging (MRI) at 1, 2, and 3 weeks postintervention, and 8 mice were analyzed with [ 18 F]fluorodeoxyglucose (FDG)-positron emission tomography (PET)-computed tomography (CT) at 48 h and at 1, 2, and 3 weeks postintervention. In infected animals, CT showed bone lesion progression, mainly in the distal epiphysis, although some uninfected animals presented evident bone sequestra at 3 weeks. MRI showed a lesion in the articular area that persisted for 3 weeks in infected animals. This lesion was smaller and less evident in the uninfected group. At 48 h postintervention, FDG-PET showed higher joint uptake in the infected group than in the uninfected group ( P = 0.025). Over time, the difference between groups increased. These results indicate that FDG-PET imaging was much more sensitive than MRI and CT for differentiating between infection and inflammation at early stages. FDG-PET clearly distinguished between infection and postsurgical bone healing (in uninfected animals) from 48 h to 3 weeks after implantation. IMPORTANCE Our results encourage future investigations on the utility of the model for testing different therapeutic procedures for osteomyelitis.
Keyphrases
- positron emission tomography
- computed tomography
- contrast enhanced
- pet imaging
- magnetic resonance imaging
- hiv infected
- bone mineral density
- soft tissue
- dual energy
- mouse model
- pet ct
- staphylococcus aureus
- image quality
- bone loss
- bone regeneration
- diffusion weighted imaging
- postmenopausal women
- antiretroviral therapy
- pseudomonas aeruginosa
- high resolution
- escherichia coli
- skeletal muscle
- cell therapy
- mass spectrometry
- stem cells
- cystic fibrosis
- big data
- mesenchymal stem cells
- oxidative stress
- bone marrow
- biofilm formation
- type diabetes
- drug induced
- artificial intelligence
- magnetic resonance
- photodynamic therapy