Login / Signup

In vivo measurements reveal a single 5'-intron is sufficient to increase protein expression level in Caenorhabditis elegans.

Matthew M CraneBryan SandsChristian BattagliaBrock JohnsonSoo YunMatt KaeberleinRoger BrentAlexander Richard Mendenhall
Published in: Scientific reports (2019)
Introns can increase gene expression levels using a variety of mechanisms collectively referred to as Intron Mediated Enhancement (IME). IME has been measured in cell culture and plant models by quantifying expression of intronless and intron-bearing reporter genes in vitro. We developed hardware and software to implement microfluidic chip-based gene expression quantification in vivo. We altered position, number and sequence of introns in reporter genes controlled by the hsp-90 promoter. Consistent with plant and mammalian studies, we determined a single, natural or synthetic, 5'-intron is sufficient for the full IME effect conferred by three synthetic introns, while a 3'-intron is not. We found coding sequence can affect IME; the same three synthetic introns that increase mcherry protein concentration by approximately 50%, increase mEGFP by 80%. We determined IME effect size is not greatly affected by the stronger vit-2 promoter. Our microfluidic imaging approach should facilitate screens for factors affecting IME and other intron-dependent processes.
Keyphrases
  • gene expression
  • dna methylation
  • genome wide
  • high throughput
  • single cell
  • circulating tumor cells
  • crispr cas
  • transcription factor
  • high resolution
  • amino acid
  • long non coding rna
  • label free