Login / Signup

Bis(N'-{(E)-[(2E)-1,3-di-phenyl-prop-2-en-1-yl-idene]amino}-N-ethyl-carbamimido-thio-ato-κ2N',S)zinc(II): crystal structure and Hirshfeld surface analysis.

Ming Yueh TanKaren A CrouseThahira B S A RavoofMukesh M JotaniEdward R T Tiekink
Published in: Acta crystallographica. Section E, Crystallographic communications (2017)
The title ZnII complex, [Zn(C18H18N3S)2], (I), features two independent but chemically equivalent mol-ecules in the asymmetric unit. In each, the thio-semicarbazonate monoanion coordinates the ZnII atom via the thiol-ate-S and imine-N atoms, with the resulting N2S2 donor set defining a distorted tetra-hedral geometry. The five-membered ZnSCN2 chelate rings adopt distinct conformations in each independent mol-ecule, i.e. one ring is almost planar while the other is twisted about the Zn-S bond. In the crystal, the two mol-ecules comprising the asymmetric unit are linked by amine-N-H⋯N(imine) and amine-N-H⋯S(thiol-ate) hydrogen bonds via an eight-membered heterosynthon, {⋯HNCN⋯HNCS}. The dimeric aggregates are further consolidated by benzene-C-H⋯S(thiol-ate) inter-actions and are linked into a zigzag supra-molecular chain along the c axis via amine-N-H⋯S(thiol-ate) hydrogen bonds. The chains are connected into a three-dimensional architecture via phenyl-C-H⋯π(phen-yl) and π-π inter-actions, the latter occurring between chelate and phenyl rings [inter-centroid separation = 3.6873 (11) Å]. The analysis of the Hirshfeld surfaces calculated for (I) emphasizes the different inter-actions formed by the independent mol-ecules in the crystal and the impact of the π-π inter-actions between chelate and phenyl rings.
Keyphrases
  • crystal structure
  • heavy metals
  • solid state
  • risk assessment
  • molecular dynamics
  • biofilm formation
  • single molecule
  • oxide nanoparticles
  • candida albicans