Login / Signup

Towards the Future of Polymeric Hybrids of Two-Dimensional Black Phosphorus or Phosphorene: From Energy to Biological Applications.

Avneesh KumarDong Wook Chang
Published in: Polymers (2023)
With the advent of a new 2D nanomaterial, namely, black phosphorus (BP) or phosphorene, the scientific community is now dedicated to focusing on and exploring this 2D material offering elusive properties such as a higher carrier mobility, biocompatibility, thickness-dependent band gap, and optoelectronic characteristics that can be harnessed for multiple applications, e.g., nanofillers, energy storage devices, field effect transistors, in water disinfection, and in biomedical sciences. The hexagonal ring of phosphorus atoms in phosphorene is twisted slightly, unlike how it is in graphene. Its unique characteristics, such as a high carrier mobility, anisotropic nature, and biocompatibility, have attracted much attention and generated further scientific curiosity. However, despite these interesting features, the phosphorene or BP poses challenges and causes frustrations when it comes to its stability under ambient conditions and processability, and thus in order to overcome these hurdles, it must be conjugated or linked with the suitable and functional organic counter macromolecule in such a way that its properties are not compromised while providing a protection from air/water that can otherwise degrade it to oxides and acid. The resulting composites/hybrid system of phosphorene and a macromolecule, e.g., a polymer, can outperform and be exploited for the aforementioned applications. These assemblies of a polymer and phosphorene have the potential for shifting the paradigm from exhaustively used graphene to new commercialized products offering multiple applications.
Keyphrases
  • healthcare
  • sewage sludge
  • mental health
  • drinking water
  • air pollution
  • particulate matter
  • working memory
  • optical coherence tomography
  • heavy metals
  • risk assessment
  • human health
  • drug release
  • tissue engineering