Metal borohydride formation from aluminium boride and metal hydrides.
Kasper T MøllerAlexander S FoghMark PaskeviciusJørgen SkibstedTorben René JensenPublished in: Physical chemistry chemical physics : PCCP (2018)
Metal borides are often decomposition products from metal borohydrides and thus play a role in the reverse reaction where hydrogen is absorbed. In this work, aluminium boride, AlB2, has been investigated as a boron source for the formation of borohydrides under hydrogen pressures of p(H2) = 100 or 600 bar at elevated temperatures (350 or 400 °C). The systems AlB2-MHx (M = Li, Na, Mg, Ca) have been investigated, producing LiBH4, NaBH4 and Ca(BH4)2, whereas the formation of Mg(BH4)2 was not observed at T = 400 °C and p(H2) = 600 bar. The formation of the metal borohydrides is confirmed by powder X-ray diffraction and infrared spectroscopy and the fraction of boron in AlB2 and M(BH4)x is determined quantitatively by 11B MAS NMR. Hydrogenation for 12 h at T = 350-400 °C and p(H2) = 600 bar leads to the formation of substantial amounts of LiBH4 (38.6 mol%), NaBH4 (83.0 mol%) and Ca(BH4)2 (43.6 mol%).