Login / Signup

A Novel Ion Pseudo-trapping Phenomenon within Traveling Wave Ion Guides.

Sugyan M DixitKeith RichardsonDavid LangridgeKevin GilesBrandon T Ruotolo
Published in: Journal of the American Society for Mass Spectrometry (2020)
The widespread use of traveling wave ion mobility (TWIM) technology in fields such as omics and structural biology motivates efforts to deepen our understanding of ion transport within such devices. Here, we describe a new advancement in TWIM theory, where pseudo-trapping within TW ion guides is characterized in detail. During pseudo-trapping, ions with different mobilities can travel with the same mean velocity, leaving others within the same TWIM experiment to separate as normal. Furthermore, pseudo-trapping limits typical band broadening experienced by ions during TWIM, manifesting as peaks with apparently improved IM resolving power, but all ions that undergo pseudo trapping are unable to separate by IM. SIMION simulations show that ions become locked into a repeated pattern of motion with respect to the TW reference frame during pseudo-trapping. We developed a simplified model capable of reproducing TW pseudo-trapping and reproducing trends observed in experimental data. Our model and simulations suggest that pseudo-trapping occurs only during experiments performed under static TWIM conditions, to an extent that depends on the detailed shape of the traveling wave. We show that pseudo-trapping alters the ion transit times and can adversely affect calibrated CCS measurements. Finally, we provide recommendations for avoiding unintentional pseudo-trapping in TWIM in order to obtain optimal separations and CCS determinations.
Keyphrases
  • quantum dots
  • molecular dynamics
  • machine learning
  • single cell
  • quality improvement
  • water soluble
  • deep learning
  • data analysis
  • clinical practice