Login / Signup

Covalent Adaptable Networks Using β-Amino Esters as Thermally Reversible Building Blocks.

Christian TaplanMarc GuerreFilip E Du Prez
Published in: Journal of the American Chemical Society (2021)
In this study, β-amino esters, prepared by the aza-Michael addition of an amine to an acrylate moiety, are investigated as building blocks for the formation of dynamic covalent networks. While such amino esters are usually considered as thermally nondynamic adducts, the kinetic model studies presented here show that dynamic covalent exchange occurs via both dynamic aza-Michael reaction and catalyst-free transesterification. This knowledge is transferred to create β-amino ester-based covalent adaptable networks (CANs) with coexisting dissociative and associative covalent dynamic exchange reactions. The ease, robustness, and versatility of this chemistry are demonstrated by using a variety of readily available multifunctional acrylates and amines. The presented CANs are reprocessed via either a dynamic aza-Michael reaction or a catalyst-free transesterification in the presence of hydroxyl moieties. This results in reprocessable, densely cross-linked materials with a glass transition temperature (Tg) ranging from -60 to 90 °C. Moreover, even for the low Tg materials, a high creep resistance was demonstrated at elevated temperatures up to 80 °C. When additional β-hydroxyl group-containing building blocks are applied during the network design, an enhanced neighboring group participation effect allows reprocessing of materials up to 10 times at 150 °C within 30 min while maintaining their material properties.
Keyphrases
  • healthcare
  • room temperature
  • drug delivery
  • physical activity
  • highly efficient
  • metal organic framework
  • high resolution
  • drug discovery
  • high speed