Login / Signup

Kinetics of the Methyl-Vinyl Radical + O2 Reactions Associated with Propene Oxidation.

Satya P JoshiTimo T PekkanenRaimo S TimonenGyörgy LendvayArkke J Eskola
Published in: The journal of physical chemistry. A (2019)
The bimolecular rate coefficients of reactions CH3CCH2 + O2 (1) and cis/ trans-CH3CHCH + O2 (2a/3a) have been measured using a tubular laminar flow reactor coupled with a photoionization mass spectrometer (PIMS). These reactions are relevant in the combustion of propene. Pulsed excimer laser photolysis of a ketone or a bromide precursor molecule at 193 or 248 nm wavelength was used to produce radicals of interest homogeneously along the reactor. Time-resolved experiments were performed under pseudo-first-order conditions at low pressure (0.3-1.5 Torr) over the temperature range 220-660 K. The measured bimolecular rate coefficients were found to be independent of bath gas concentration. The bimolecular rate coefficients possess negative temperature dependence at low temperatures ( T < 420 K) and appear to be independent of temperature at high temperatures ( T > 420 K). Observed products of the reaction CH3CCH2 + O2 were CH3 and H2CO, while for the reaction cis/trans-CH3CHCH + O2, observed products were CH3CHO and HCO. Current results indicate that the reaction mechanism of both reactions is analogous to that of C2H3 + O2. Methyl substitution of the vinyl radical changes its reactivity toward O2 upward by ca. 50% if it involves the α-position and downward by ca. 30% if the methyl group takes either of the β-positions, respectively.
Keyphrases
  • room temperature
  • wastewater treatment
  • ionic liquid
  • high resolution
  • electron transfer
  • mass spectrometry
  • risk assessment
  • anaerobic digestion
  • heavy metals
  • high glucose
  • monte carlo