Login / Signup

Metformin improves FOXP3 mRNA expression through suppression of interferon gamma levels in pristane-induced murine models of lupus.

Stevent SumantriMochammad HattaRosdiana NatzirHaerani RasyidIris RengganisMuhammad Nasrum MassiAndi Asadul IslamGatot LawrenceIlhamjaya PatellongiAndi Fachruddin Benyamin
Published in: F1000Research (2020)
Background:  A recent study has indicated the potential of metformin therapy for lupus in animal models, but there has been no study evaluating the effect on pristane-induced lupus. This study aims to evaluate the effect of intraperitoneal versus oral metformin on interferon (IFN)-γ levels and FOXP3 mRNA expression on pristane-induced female BALB/c mice. Methods: In total, 31 female BALB/c mice, aged 6 weeks, were intraperitoneally induced with 0.5 ml of pristane (2,6,10,14-tetramethylpentadecane). After 120 days, the mice were grouped and treated with various treatments: normal saline 100 MCL, oral metformin 100mg/kg-BW, or intraperitoneal metformin 100mg/kg-BW. After 60 days of treatment, all treatment groups were sacrificed, and kidney specimens prepared and stained using hematoxylin and eosin. Results: IFNγ levels of saline controls vs. oral metformin group was 309.39 vs. 292.83 pg/mL (mean difference 16.56 pg/mL; 95% CI 0.74-32.37; p=0.042), and saline control vs. intraperitoneal metformin group was 309.39 vs. 266.90 pg/mL (mean difference 42.49 pg/mL; 95% CI 29.24-55.73 pg/mL; p<0.001). FOXP3 mRNA expression changes in saline controls vs. oral metformin group was 6.90 vs. 7.79-fold change (mean difference -0.89-fold change; 95% CI -1.68-(-0.11); p=0.03)  and in saline controls vs. intraperitoneal metformin group was 6.90 vs. 9.02-fold change (mean difference -2.12-fold change; 95% CI -2.99-(-1.25); p=<0.001). Correlation analysis of FOXP3 mRNA expression and IFNγ level changes revealed a Pearson correlation of -0.785 (p=0.001) and R2 value of 0.616 (p=0.001). Conclusion: Metformin is a potential new therapy to reduce the levels of IFNγ and increase FOXP3 mRNA expression in mice models of systemic lupus erythematosus.
Keyphrases