Login / Signup

Energy System Contributions and Physical Activity in Specific Age Groups during Exergames.

Seung-Bo ParkMinjun KimEunseok LeeDoowon LeeSeong Jun SonJunggi HongWoo-Hwi Yang
Published in: International journal of environmental research and public health (2020)
Exergames have been recommended as alternative ways to increase the health benefits of physical exercise. However, energy system contributions (phosphagen, glycolytic, and oxidative) of exergames in specific age groups remain unclear. The purpose of this study was to investigate the contributions of three energy systems and metabolic profiles in specific age groups during exergames. Seventy-four healthy males and females participated in this study (older adults, n = 26: Age of 75.4 ± 4.4 years, body mass of 59.4 ± 8.7 kg, height of 157.2 ± 8.6 cm; adults, n = 24: Age of 27.8 ± 3.3 years, body mass of 73.4 ± 17.8 kg, height of 170.9 ± 11.9 cm; and adolescents, n = 24: Age of 14 ± 0.8 years, body mass of 71.3 ± 11.5 kg, height of 173.3 ± 5.2 cm). To evaluate the demands of different energy systems, all participants engaged in exergames named Action-Racing. Exergames protocol comprised whole-body exercises such as standing, sitting, stopping, jumping, and arm swinging. During exergames, mean heart rate (HRmean), peak heart rate (HRpeak), mean oxygen uptake (VO2mean), peak oxygen uptake (VO2peak), peak lactate (Peak La-), difference in lactate (ΔLa-), phosphagen (WPCr), glycolytic (WLa-), oxidative (WAER), and total energy demands (WTotal) were analyzed. The contribution of the oxidative energy system was higher than that of the phosphagen or glycolytic energy system (65.9 ± 12% vs. 29.5 ± 11.1% or 4.6 ± 3.3%, both p < 0.001). The contributions of the total energy demands and oxidative system in older adults were significantly lower than those in adults and adolescents (72.1 ± 28 kJ, p = 0.028; 70.3 ± 24.1 kJ, p = 0.024, respectively). The oxidative energy system was predominantly used for exergames applied in the current study. In addition, total metabolic work in older adults was lower than that in adolescents and adults. This was due to a decrease in the oxidative energy system. For future studies, quantification of intensity and volume is needed to optimize exergames. Such an approach plays a crucial role in encouraging physical activity in limited spaces.
Keyphrases
  • physical activity
  • heart rate
  • body mass index
  • young adults
  • heart rate variability
  • blood pressure
  • healthcare
  • mental health
  • risk assessment
  • body composition
  • sleep quality
  • health information