Extracellular Vesicles Derived from Selenium-Deficient MAC-T Cells Aggravated Inflammation and Apoptosis by Triggering the Endoplasmic Reticulum (ER) Stress/PI3K-AKT-mTOR Pathway in Bovine Mammary Epithelial Cells.
Yu ChenXiangqian ZhangJing YangWen FengGanzhen DengShiwen XuMeng-Yao GuoPublished in: Antioxidants (Basel, Switzerland) (2023)
Selenium (Se) deficiency disrupts intracellular REDOX homeostasis and severely deteriorates immune and anti-inflammatory function in high-yielding periparturient dairy cattle. To investigate the damage of extracellular vesicles derived from Se-deficient MAC-T cells (SeD-EV) on normal mammary epithelial cells, an in vitro model of Se deficiency was established. Se-deficient MAC-T cells produced many ROS, promoting apoptosis and the release of inflammatory factors. Extracellular vesicles were successfully isolated by ultrahigh-speed centrifugation and identified by transmission electron microscopy, particle size analysis, and surface markers (CD63, CD81, HSP70, and TSG101). RNA sequencing was performed on exosomal RNA. A total of 9393 lncRNAs and 63,155 mRNAs transcripts were identified in the SeC and SeD groups, respectively, of which 126 lncRNAs and 955 mRNAs were differentially expressed. Furthermore, SeD-EV promoted apoptosis of normal MAC-T cells by TUNEL analysis. SeD-EV significantly inhibited Bcl-2, while Bax and Cleaved Caspase3 were greatly increased. Antioxidant capacity (CAT, T-AOC, SOD, and GSH-Px) was inhibited in SeD-EV-treated MAC-T cells. Additionally, p-PERK, p-eIF2α, ATF4, CHOP, and XBP1 were all elevated in MAC-T cells supplemented with SeD-EV. In addition, p-PI3K, p-Akt, and p-mTOR were decreased strikingly by SeD-EV. In conclusion, SeD-EV caused oxidative stress, thus triggering apoptosis and inflammation through endoplasmic reticulum stress and the PI3K-Akt-mTOR signaling pathway, which contributed to explaining the mechanism of Se deficiency causing mastitis.
Keyphrases
- endoplasmic reticulum stress
- induced apoptosis
- oxidative stress
- signaling pathway
- endoplasmic reticulum
- dna damage
- cell death
- diabetic rats
- ischemia reperfusion injury
- cell cycle arrest
- cell proliferation
- replacement therapy
- diffuse large b cell lymphoma
- epithelial mesenchymal transition
- anti inflammatory
- heat shock
- transcription factor
- heat shock protein
- network analysis
- heat stress
- newly diagnosed