Login / Signup

The control of the arm's equilibrium position.

Atsushi TakagiEtienne BurdetYasuharu Koike
Published in: Journal of neurophysiology (2024)
To generate a force, the brain activates muscles that act like springs to pull the arm toward a new equilibrium position. The equilibrium position (EP) is central to our understanding of the biological control of viscoelastic muscles. Although there is evidence of the EP during the control of limb posture, EPs have not been directly identified when the limb exerts a force against the environment. Here, we asked participants to apply a constant force in one of eight directions against a point-like constraint. This constraint was released abruptly to observe the final position to which the arm converged. Importantly, the same force magnitude was maintained while changing the arm's stiffness by modulating the strength of the hand's power grasp. The final position moved further away from the constraint as the arm became less stiff and was inversely proportional to the arm's stiffness, thereby confirming that the final position was the arm's EP. These results demonstrate how the EP changes with the arm's stiffness to produce a desired force in different directions. NEW & NOTEWORTHY According to numerous theories, the brain controls posture and movement by activating muscles that attract the limb toward a so-called equilibrium position, but the universality of this mechanism has not been shown for different motor behaviors. Here, we show that even when pushing or pulling against the environment, the brain achieves the desired force through an equilibrium position that lies beyond the physical constraint.
Keyphrases