Login / Signup

F12-TZ-cCR: A Methodology for Faster and Still Highly Accurate Quartic Force Fields.

Alexandria G WatrousBrent R WestbrookRyan C Fortenberry
Published in: The journal of physical chemistry. A (2021)
The F12-TZ-cCR quartic force field (QFF) methodology, defined here as CCSD(T)-F12b/cc-pCVTZ-F12 with further corrections for relativity, is introduced as a cheaper and even more accurate alternative to more costly composite QFF methods like those containing complete basis set extrapolations within canonical coupled cluster theory. F12-TZ-cCR QFFs produce B0 and C0 vibrationally averaged principal rotational constants within 7.5 MHz of gas-phase experimental values for tetraatomic and larger molecules, offering higher accuracy in these constants than the previous composite methods. In addition, F12-TZ-cCR offers an order of magnitude decrease in the computational cost of highly accurate QFF methodologies accompanying this increase in accuracy. An additional order of magnitude in cost reduction is achieved in the F12-DZ-cCR method, while also matching the accuracy of the traditional composite method's B0 and C0 constants. Finally, F12-DZ and F12-TZ are benchmarked on the same test set, revealing that both methods can provide anharmonic vibrational frequencies that are comparable in accuracy to all three of the more expensive methodologies, although their rotational constants lag behind. Hence, the present work demonstrates that highly accurate theoretical rovibrational spectral data can be obtained for a fraction of the cost of conventional QFF methodologies, extending the applicability of QFFs to larger molecules.
Keyphrases