Login / Signup

Enzymatic and Non-Enzymatic Antioxidant Responses of Young Tomato Plants (cv. Micro-Tom) to Single and Combined Mild Nitrogen and Water Deficit: Not the Sum of the Parts.

Joana MachadoMarta W VasconcelosCristiano SoaresFernanda FidalgoEp HeuvelinkSusana M P Carvalho
Published in: Antioxidants (Basel, Switzerland) (2023)
This study aims to perform a broad analysis of the antioxidant (AOX) responses of young tomato plants exposed to single and combined mild nitrogen (N) and water deficits through the evaluation of oxidative biomarkers, non-enzymatic and enzymatic AOX components. 'Micro-Tom' seedlings were subjected to four treatments: control (CTR; 100%N + 100%W), N deficit (N; 50%N), water deficit (W; 50%W), and combined deficits (N + W; 50%N + 50%W). An enhancement of several non-enzymatic and enzymatic components was found in plants subjected to N + W deficit, which presented higher anthocyanins accumulation (up to 103%) as well as higher levels of superoxide dismutase (SOD) transcripts at root level and of ascorbate peroxidase (APX) and catalase (CAT) transcripts at shoot level. This increase in the gene expression was also translated in augmented SOD (up to 202%), APX (up to 155%) and CAT (up to 108%) activity compared to CTR plants and the single deficits. Overall, tomato plants were able to employ defense strategies to cope with this combined deficit, as demonstrated by the higher total AOX capacity (up to 87%) compared to the single deficits, which contributed to the maintenance of their redox homeostasis, with unchanged values of lipid peroxidation and hydrogen peroxide compared with CTR plants.
Keyphrases
  • hydrogen peroxide
  • nitric oxide
  • gene expression
  • traumatic brain injury
  • oxidative stress
  • dna methylation
  • middle aged
  • anti inflammatory
  • amyotrophic lateral sclerosis
  • innate immune
  • virtual reality