Login / Signup

Vitreous Carbon, Geometry and Topology: A Hollistic Approach.

Patrice Mélinon
Published in: Nanomaterials (Basel, Switzerland) (2021)
Glass-like carbon (GLC) is a complex structure with astonishing properties: isotropic sp2 structure, low density and chemical robustness. Despite the expanded efforts to understand the structure, it remains little known. We review the different models and a physical route (pulsed laser deposition) based on a well controlled annealing of the native 2D/3D amorphous films. The many models all have compromises: neither all bad nor entirely satisfactory. Properties are understood in a single framework given by topological and geometrical properties. To do this, we present the basic tools of topology and geometry at a ground level for 2D surface, graphene being the best candidate to do this. With this in mind, special attention is paid to the hyperbolic geometry giving birth to triply periodic minimal surfaces. Such surfaces are the basic tools to understand the GLC network architecture. Using two theorems (the classification and the uniformisation), most of the GLC properties can be tackled at least at a heuristic level. All the properties presented can be extended to 2D materials. It is hoped that some researchers may find it useful for their experiments.
Keyphrases
  • room temperature
  • physical activity
  • machine learning
  • pregnant women
  • high resolution
  • mass spectrometry
  • carbon nanotubes
  • high speed
  • preterm birth