Electrochemical Deposition of Ferromagnetic Ni Nanoparticles in InP Nanotemplates Fabricated by Anodic Etching Using Environmentally Friendly Electrolyte.
Călin Constantin MoiseGeanina Valentina MihaiLiana AnicăiEduard V MonaicoVeaceslav V UrsakiMarius EnachescuIon M TiginyanuPublished in: Nanomaterials (Basel, Switzerland) (2022)
Porous InP templates possessing a thickness of up to 100 µm and uniformly distributed porosity were prepared by anodic etching of InP substrates exhibiting different electrical conductivities, involving an environmentally friendly electrolyte. Ni nanoparticles were successfully directly deposited by pulsed electroplating into prefabricated InP templates without any additional deposition of intermediary layers. The parameters of electrodeposition, including the pulse amplitude, pulse width and interval between pulses, were optimized to reach a uniform metal deposition covering the inner surface of the nanopores. The electrochemical dissolution of n -InP single crystals was investigated by measuring the current-voltage dependences, while the Ni-decorated n -InP templates have been characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The proposed technology is expected to be of interest for sensing and photocatalytic applications, as well as for the exploration of their plasmonic and magnetic properties.
Keyphrases
- electron microscopy
- ionic liquid
- high resolution
- single molecule
- molecularly imprinted
- room temperature
- solid state
- blood pressure
- gold nanoparticles
- metal organic framework
- label free
- magnetic resonance imaging
- reduced graphene oxide
- solid phase extraction
- mass spectrometry
- quantum dots
- magnetic resonance
- resting state
- functional connectivity
- transition metal
- tandem mass spectrometry