Login / Signup

Core-Packing-Related Vibrational Properties of Thiol-Protected Gold Nanoclusters and Their Excited-State Behavior.

Xueke YuWei PeiWen-Wu XuYang ZhaoYan SuJijun Zhao
Published in: Inorganic chemistry (2023)
Thiolate-protected gold nanoclusters, with unique nuclearity- and structure-dependent properties, have been extensively used in energy conversion and catalysis; however, the mystery between kernel structures and properties remains to be revealed. Here, the influence of core packing on the electronic structure, vibrational properties, and excited-state dynamics of four gold nanoclusters with various kernel structures is explored using density functional theory combined with time-domain nonadiabatic molecular dynamics simulations. We elucidate the correlation between the geometrical structure and excited-state dynamics of gold nanoclusters. The distinct carrier lifetimes of the four nanoclusters are attributed to various electron-phonon couplings arising from the different vibrational properties caused by core packing. We have identified specific phonon modes that participate in the electron-hole recombination dynamics, which are related to the gold core of nanoclusters. This study paints a physical picture from the geometric configuration, electronic structure, vibrational properties, and carrier lifetime of these nanoclusters, thereby facilitating their potential application in optoelectronic materials.
Keyphrases