Login / Signup

Temporal population genetic structure of Phormia regina (Diptera: Calliphoridae).

Charity G OwingsAniruddha BanerjeeChristine J Picard
Published in: Journal of medical entomology (2023)
The genetic structure of forensically important blow fly (Brauer & Bergenstamm) (Diptera: Calliphoridae) populations has remained elusive despite high relatedness within wild-caught samples. This research aimed to determine if the implementation of a high-resolution spatiotemporal sampling design would reveal latent genetic structure among blow fly populations and to elucidate any environmental impacts on observed patterns of genetic structure. Adult females of the black blow fly, Phormia regina (Meigen) (Diptera: Calliphoridae), were collected from 9 urban parks in Indiana, USA over 3 yr and genotyped at 6 polymorphic microsatellite loci. The data analysis involved 3 clustering methods: principal coordinate analysis (PCoA), discriminant analysis of principal components (DAPC), and STRUCTURE. While the PCoA did not uncover any discernible clustering patterns, the DAPC and STRUCTURE analyses yielded significant results, with 9 and 4 genetic clusters, respectively. Visualization of the STRUCTURE bar plot revealed N = 11 temporal demarcations indicating barriers to gene flow. An analysis of molecular variance of these STRUCTURE-inferred populations supported strong temporally driven genetic differentiation (FST = 0.048, F'ST = 0.664) relative to geographic differentiation (FST = 0.009, F'ST = 0.241). Integrated Nested Laplace Approximation and Boosted Regression Tree analyses revealed that collection timepoint and 4 main abiotic factors (temperature, humidity, precipitation, and wind speed) were associated with the genetic subdivisions observed for P. regina. A complex interplay between environmental conditions, the unique reproductive strategies of the blow fly, and the extensive dispersal abilities of these organisms likely drives the strong genetic structure of P. regina in the Midwestern US.
Keyphrases
  • genome wide
  • copy number
  • high resolution
  • data analysis
  • healthcare
  • primary care
  • gene expression
  • genetic diversity
  • climate change
  • single molecule
  • human health
  • risk assessment
  • genome wide association study
  • high speed