Login / Signup

Neural attentional filters and behavioural outcome follow independent individual trajectories over the adult lifespan.

Sarah TuneJonas Obleser
Published in: eLife (2024)
Preserved communication abilities promote healthy ageing. To this end, the age-typical loss of sensory acuity might in part be compensated for by an individual's preserved attentional neural filtering. Is such a compensatory brain-behaviour link longitudinally stable? Can it predict individual change in listening behaviour? We here show that individual listening behaviour and neural filtering ability follow largely independent developmental trajectories modelling electroencephalographic and behavioural data of N = 105 ageing individuals (39-82 y). First, despite the expected decline in hearing-threshold-derived sensory acuity, listening-task performance proved stable over 2 y. Second, neural filtering and behaviour were correlated only within each separate measurement timepoint (T1, T2). Longitudinally, however, our results raise caution on attention-guided neural filtering metrics as predictors of individual trajectories in listening behaviour: neither neural filtering at T1 nor its 2-year change could predict individual 2-year behavioural change, under a combination of modelling strategies.
Keyphrases
  • depressive symptoms
  • working memory
  • multiple sclerosis
  • white matter
  • brain injury
  • deep learning
  • functional connectivity
  • artificial intelligence