Ultraminiaturized Stretchable Strain Sensors Based on Single Silicon Nanowires for Imperceptible Electronic Skins.
Siyi HuangBing-Chang ZhangZhibin ShaoLe HeQiao ZhangJian-Sheng JieXiao-Hong ZhangPublished in: Nano letters (2020)
Miniaturized stretchable strain sensors are key components in E-skins for applications such as personalized health-monitoring, body motion perception, and human-machine interfaces. However, it remains a big challenge to fabricate miniaturized stretchable strain sensors with high imperceptibility. Here, we reported for the first time novel ultraminiaturized stretchable strain sensors based on single centimeter-long silicon nanowires (cm-SiNWs). With the diameter of the active materials even smaller than that of spider silks, these sensors are highly imperceptible. They exhibit a large strain sensing range (>45%) and a high durability (>10 000 cycles). Their optimum strain sensing ranges could be modulated by controlling the prestrains of the stretchable cm-SiNWs. On the basis of this capability, sensors with appropriate sensing ranges were chosen to respectively monitor large and subtle human motions including joint motion, swallow, and touch. The strategy of applying single cm-SiNWs in stretchable sensors would open new doors to fabricate ultraminiaturized stretchable devices.