Login / Signup

β-Hydroxy-β-methyl Butyrate Is More Potent Than Leucine in Inhibiting Starvation-Induced Protein Degradation in C2C12 Myotubes.

Yehui DuanFengna LiQiuping GuoWenlong WangLingyu ZhangChaoyue WenXiao'an ChenYulong Yin
Published in: Journal of agricultural and food chemistry (2017)
Leucine (Leu) and its metabolites α-ketoisocaproate (KIC) and β-hydroxy-β-methyl butyrate (HMB) are potent regulators of protein turnover. The aim of this study was to compare the inhibitory effects of Leu, KIC, and HMB on protein degradation and to investigate the mechanisms involved. The results showed that the inhibitory effect of HMB (0.38 ± 0.04) was more potent than that of Leu (0.76 ± 0.04) and KIC (0.56 ± 0.04, P < 0.01), and was significantly abolished in the presence of LY294002 (1.48 ± 0.02) and rapamycin (1.96 ± 0.02, P < 0.01). In the presence of insulin, the inhibitory effect of HMB (0.34 ± 0.03) was still more effective than that of Leu (0.60 ± 0.04) and KIC (0.57 ± 0.08, P < 0.05). Interestingly, LY294002 treatment markedly attenuated the effect of HMB, while rapamycin treatment failed to exert the same effect. Thus, HMB appears to be more potent than Leu and KIC in inhibiting protein degradation in the absence or presence of insulin, and this inhibitory effect may be dependent on PI3K/Akt signaling pathway regardless of insulin, and mTOR signaling was only involved in this effect of HMB in the absence of insulin.
Keyphrases