Nanosized-Selenium-Application-Mediated Cadmium Toxicity in Aromatic Rice at Different Stages.
Baoling CuiHaowen LuoXiangbin YaoPipeng XingSicheng DengQianqian ZhangWentao YiQichang GuLigong PengXianghai YuChangjian ZuoJingjing WangYangbo WangXiangru TangPublished in: Plants (Basel, Switzerland) (2024)
Cadmium (Cd) pollution restricts the rice growth and poses a threat to human health. Nanosized selenium (NanoSe) is a new nano material. However, the effects of NanoSe application on aromatic rice performances under Cd pollution have not been reported. In this study, a pot experiment was conducted with two aromatic rice varieties and a soil Cd concentration of 30 mg/kg. Five NanoSe treatments were applied at distinct growth stages: (T1) at the initial panicle stage, (T2) at the heading stage, (T3) at the grain-filling stage, (T1+2) at both the panicle initial and heading stages, and (T1+3) at both the panicle initial and grain-filling stages. A control group (CK) was maintained without any application of Se. The results showed that, compared with CK, the T1+2 and T1+3 treatments significantly reduced the grain Cd content. All NanoSe treatments increased the grain Se content. The grain number per panicle, 1000-grain weight, and grain yield significantly increased due to NanoSe application under Cd pollution. The highest yield was recorded in T3 and T1+3 treatments. Compared with CK, all NanoSe treatments increased the grain 2-acetyl-1-pyrroline (2-AP) content and impacted the content of pyrroline-5-carboxylic acid and 1-pyrroline which are the precursors in 2-AP biosynthesis. In conclusion, the foliar application of NanoSe significantly reduced the Cd content, increased the Se content, and improved the grain yield and 2-AP content of aromatic rice. The best amendment was applying NanoSe at both the panicle initial and grain-filling stages.