Login / Signup

Resistance to Unwanted Photo-Oxidation of Multi-Acene Molecules.

Yu YanZachary A LamportIoannis KymissisSamuel W Thomas
Published in: The Journal of organic chemistry (2020)
Although long acenes remain a key class of π-conjugated molecules for numerous applications, photoinduced oxidation upon exposure of the acene to light, often through sensitization of 1O2, is an important reaction requiring mitigation for most applications. In response to this ongoing challenge, this paper presents a series of four new diarylethynyl-substituted long acenes-three tetracenes and one anthradithiophene-in which the arylene pendants are either benzene, naphthalene, or anthracene. UV/vis and fluorescence spectroscopy reveals that the anthracene-substituted derivatives fluoresce poorly (Φ < 0.01). Although all four long acenes react with 1O2 at expected rates when an external photosensitizer is included and show the expected changes in fluorescence to accompany these reactions, the anthracene-substituted derivatives resist direct photoinduced oxidation. Through a combination of mechanistic experiments, we conclude that rapid nonradiative decay of the anthracene-substituted derivatives, perhaps because of inter-arene torsions that emerge in theoretical geometry optimizations, makes these compounds poor photosensitizers for 1O2 or other reactive oxygen species. This discovery opens new design possibilities for extended acene structures with improved photochemical stability.
Keyphrases