Login / Signup

Toward Individualized Prediction of Response to Methotrexate in Early Rheumatoid Arthritis: A Pharmacogenomics-Driven Machine Learning Approach.

Elena MyasoedovaArjun P AthreyaCynthia S CrowsonJohn M DavisKenneth J WarringtonRobert C WalchakErin CarlsonKrishna R KalariTim BongartzPaul P TakRonald F van VollenhovenLeonid PadyukovPaul EmeryAnn W MorganLiewei WangRichard M WeinshilboumEric L Mattesonnull null
Published in: Arthritis care & research (2022)
Pharmacogenomic biomarkers combined with baseline DAS28 scores can be useful in predicting response to methotrexate in patients with early RA. Applying ML to predict treatment response holds promise for guiding effective RA treatment choices, including timely escalation of RA therapies.
Keyphrases
  • rheumatoid arthritis
  • disease activity
  • machine learning
  • ankylosing spondylitis
  • systemic lupus erythematosus
  • high dose
  • interstitial lung disease
  • big data
  • clinical decision support
  • artificial intelligence
  • low dose