Parabrachial calcitonin gene-related peptide neurons mediate conditioned taste aversion.
Matthew E CarterSung HanRichard D PalmiterPublished in: The Journal of neuroscience : the official journal of the Society for Neuroscience (2015)
Conditioned taste aversion (CTA) is a phenomenon in which an individual forms an association between a novel tastant and toxin-induced gastrointestinal malaise. Previous studies showed that the parabrachial nucleus (PBN) contains neurons that are necessary for the acquisition of CTA, but the specific neuronal populations involved are unknown. Previously, we identified calcitonin gene-related peptide (CGRP)-expressing neurons in the external lateral subdivision of the PBN (PBel) as being sufficient to suppress appetite and necessary for the anorexigenic effects of appetite-suppressing substances including lithium chloride (LiCl), a compound often used to induce CTA. Here, we test the hypothesis that PBel CGRP neurons are sufficient and necessary for CTA acquisition in mice. We show that optogenetic activation of these neurons is sufficient to induce CTA in the absence of anorexigenic substances, whereas genetically induced silencing of these neurons attenuates acquisition of CTA upon exposure to LiCl. Together, these results demonstrate that PBel CGRP neurons mediate a gastrointestinal distress signal required to establish CTA.