Login / Signup

Chemoselective Lewis pair polymerization of renewable multivinyl-functionalized γ-butyrolactones.

Ravikumar R GowdaEugene Y-X Chen
Published in: Philosophical transactions. Series A, Mathematical, physical, and engineering sciences (2017)
Multivinyl-functionalized γ-butyrolactones, γ-vinyl-γ-methyl-α-methylene-γ-butyrolactone (γVMMBL) and γ-allyl-γ-methyl-α-methylene-γ-butyrolactone (γAMMBL), have been synthesized from biorenewable ethyl levulinate and effectively polymerized by Lewis pairs consisting of an organic N-heterocyclic carbene Lewis base and a strong organo-Lewis acid E(C6F5)3 (E = Al, B). This Lewis pair polymerization is quantitatively chemoselective, proceeds exclusively via polyaddition across the conjugated α-methylene double bond without participation of the γ-vinyl or γ-allyl double bond, and produces high-molecular-weight functionalized polymers with unimodal molecular-weight distributions. The Al-based Lewis pair produces a polymer with approximately 5.5 times higher molecular weight than that produced by the B-based Lewis pair. The resulting vinyl-functionalized polymers are soluble in common organic solvents and stable at room temperature, and can be thermally cured into crosslinked materials.This article is part of the themed issue 'Frustrated Lewis pair chemistry'.
Keyphrases
  • room temperature
  • quantum dots
  • ionic liquid
  • molecularly imprinted
  • photodynamic therapy
  • liquid chromatography