Login / Signup

Quantized nonlinear Thouless pumping.

Marius JürgensenSebabrata MukherjeeMikael C Rechtsman
Published in: Nature (2021)
The topological protection of wave transport, originally observed in the context of the quantum Hall effect in two-dimensional electron gases1, has been shown to apply broadly to a range of physical platforms, including photonics2-5, ultracold atoms in optical lattices6-8 and others9-12. That said, the behaviour of such systems can be very different from the electronic case, particularly when interparticle interactions or nonlinearity play a major role13-22. A Thouless pump23 is a one-dimensional model that captures the topological quantization of transport in the quantum Hall effect using the notion of dimensional reduction: an adiabatically, time-varying potential mathematically maps onto a momentum coordinate in a conceptual second dimension24-34. Importantly, quantization assumes uniformly filled electron bands below a Fermi energy, or an equivalent occupation for non-equilibrium bosonic systems. Here we theoretically propose and experimentally demonstrate quantized nonlinear Thouless pumping of photons with a band that is decidedly not uniformly occupied. In our system, nonlinearity acts to quantize transport via soliton formation and spontaneous symmetry-breaking bifurcations. Quantization follows from the fact that the instantaneous soliton solutions centred upon a given unit cell are identical after each pump cycle, up to translation invariance; this is an entirely different mechanism from traditional Thouless pumping. This result shows that nonlinearity and interparticle interactions can induce quantized transport and topological behaviour without a linear counterpart.
Keyphrases
  • molecular dynamics
  • physical activity
  • high resolution
  • cell therapy
  • risk assessment
  • climate change
  • mass spectrometry
  • molecular dynamics simulations
  • high speed
  • energy transfer
  • solar cells