Damage and Repair in Informational Poly(N-substituted urethane)s.
Tathagata MondalLaurence CharlesJean-François LutzPublished in: Angewandte Chemie (International ed. in English) (2020)
The degradation and repair of uniform sequence-defined poly(N-substituted urethane)s was studied. Polymers containing an ω-OH end-group and only ethyl carbamate main-chain repeat units rapidly degrade in NaOH solution through an ω→α depolymerization mechanism with no apparent sign of random chain cleavage. The degradation mechanism is not notably affected by the nature of the side-chain N-substituents and took place for all studied sequences. On the other hand, depolymerization is significantly influenced by the molecular structure of the main-chain repeat units. For instance, hexyl carbamate main-chain motifs block unzipping and can therefore be used to control the degradation of specific sequence sections. Interestingly, the partially degraded polymers can also be repaired; for example by using a combination of N,N'-disuccinimidyl carbonate with a secondary amine building-block. Overall, these findings open up interesting new avenues for chain-healing and sequence editing.