A great deal of thermally instable cis form photoisomerization products will be formed from the thermally stable trans form of the plant sunscreens sinapate esters upon ultraviolet radiation. To reveal the photoisomerization mechanism of the cis-isomer, we explore the photodynamics of a model plant sunscreen methyl sinapate (MS) in the cis form in organic solution. The high photoisomerization quantum yield of the cis-isomer results in the relatively higher photostability of trans-MS. By utilizing femtosecond transient absorption spectroscopy and quantum chemical calculation, we propose that an adiabatic relaxation competes with nonadiabatic relaxation for the excited-state cis form of methyl sinapate. These results suggest that the photoprotection mechanism of the cis form of sinapate esters is significantly different from that of the trans form of sinapate esters and plays an important role in the overall photoprotection effect.