Copper and Photocatalytic Radical Relay Enabling Fluoroalkylphosphorothiolation of Alkenes: Modular Synthesis of Fluorine-Containing S-Alkyl Phosphorothioates and Phosphorodithioates.
Pengbo ZhangWenwu LiWeilong QuZhigang ShuYingjun TaoJin-Ming LinXia GaoPublished in: Organic letters (2021)
A photoredox and copper-catalyzed fluoroalkylphosphorothiolation of activated and unactivated alkenes via a radical relay mechanism is reported. By employing fluoroalkyl halides as radical precursors and P(O)SH or P(S)SH compounds as coupling partners, a wide range of β-monofluoroalkyl-, -difluoroalkyl-, -trifluoromethyl-, or -perfluoroalkyl-substituted S-alkyl phosphorothioates and phosphorodithioates can be easily constructed under mild conditions with good functional group tolerance. Furthermore, this modular reaction system can be successfully applied to late-stage functionalization of bioactive molecules.