Login / Signup

Efficient Passive Daytime Radiative Cooling by Hierarchically Designed Films Integrating Robust Durability.

Liang ZhangHaiyang ZhanYuhang XiaRenwei ZhangJuncheng XueJiahao YongLei ZhaoYahua LiuShile Feng
Published in: ACS applied materials & interfaces (2023)
Surfaces with efficient passive daytime radiative cooling (PDRC) are underpinned by maximizing both solar reflection and thermal radiation to the outer space at no additional energy cost. Despite notable progress, their practical applications are of great challenge due to their complicated fabrication processes, easy contamination and damage, and high costs. Herein, we fabricate a hierarchically designed passive daytime radiative cooling film (HPRF) comprising cost-effective Al 2 O 3 particles and poly(dimethylsiloxane) (PDMS) via a simple phase separation method. The designed film possesses a high solar spectrum reflectance of ∼0.96 and a mid-infrared emittance of ∼0.95, achieving a ∼12.4 °C subambient cooling under direct solar irradiation. This excellent PDRC is due to the efficient Mie scattering of sunlight by hierarchical micro-/nanostructures and selected molecular vibrations of PDMS combined with the phonon polariton resonance of Al 2 O 3 particles, respectively. Moreover, the designed HPRF is accompanied with robust durability endowed by superior self-cleaning, flexibility, and anti-ultraviolet radiation that can present substantial application promises of thermal management in various electronic devices and wearable products.
Keyphrases